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Abstract 

Two apparently different descriptions of acoustical 
activity - one due to Portigal & Burstein [Phys. Rev. 
(1968), 170, 673-678] based on the concept of spatial 
dispersion of the elastic stiffness tensor and the other 
based on the rotation-gradient theory due to Truesdell 
& Toupin [Encyclopedia of Physics, (1960), Vol. III/1. 
Berlin: Springer], Mindlin & Tiersten [Arch. Ration. 
Mech. Anal. (1962), 11, 415-447] - are analysed on 
the common basis of the first-gradient theory. A rela- 
tion between the tensors used for describing the 
acoustical activity in the two earlier descriptions is 
obtained. 

1. Introduction 

Ever since the concept of acoustical activity was intro- 
duced by Andronov (1960) and independently by 
Silin (1960) there has been continued interest both 
in its experimental observation (Pine, 1970; Joffrin, 
Dorner & Joffrin, 1980; Bialas & Schauer, 1982; Quan, 
Fang, Zhigong & Zenyi, 1987) and its theoretical 
characterization (Truesdell & Toupin, 1960; Mindlin 
& Tiersten, 1962; Portigal & Burstein, 1968; Mindlin 
& Toupin, 1971; Vuzhva & Lyamov, 1977; Kumar- 
swamy & Krishnamurthy, 1980). Recently the occur- 
rence of acoustical activity in crystals of different 
point-group symmetries has been examined from two 
apparently different points of view (Bhagwat, Wad- 
hawan & Subramanian, 1986; Bhagwat & Sub- 
ramanian, 1986) - the theory of spatial dispersion 
(Portigal & Burstein, 1968) and the rotation-gradient 
theory (Mindlin & Tiersten, 1962). Even though both 
viewpoints lead to the same acoustically active crystal 
classes, a disturbing feature remains: the tensors 
describing acoustical activity in the two descriptions 

have different symmetries and appear to be com- 
pletely unrelated. 

The aim of the present paper is to show that both 
viewpoints can be reconciled on the basis of the more 
general strain-gradient theory of acoustical activity 
where one employs the strain and its first gradient to 
describe the elastic deformation (Toupin, 1962; 
Mindlin, 1972). We also obtain a rationale for the 
maximum number of independent non-vanishing 
components of the acoustical activity tensors. 

The paper is organized as follows. In § 2 we briefly 
recapitulate the salient features of the spatial disper- 
sion theory of acoustical activity due to Portigal & 
Burstein (1968) and the rotation-gradient theory due 
to Truesdell & Toupin (1960) and Mindlin & Tiersten 
(1962). In § 3 we consider the full first-strain-gradient 
theory of elasticity given by Toupin (1962). Here we 
establish the formal equivalence of this theory with 
the theory of spatial dispersion. Further we show that 
rotation-gradient theory results from the general 
theory under certain additional restrictions. 

2. R6sum6 of two viewpoints 

A. Theory of spatial dispersion 

Portigal & Burstein (1968) explained the occur- 
rence of acoustical activity on the basis of spatial 
dispersion of the elastic stiffness tensor, by writing 
the most general form of Hooke's law as 

aij(r, t) = ~ dr' j dt' Cijkt(r-r', t -  t')ekt(r', t'). (2.1) 
- - O D  

As usual, summation over repeated indices will be 
implied. The stress tr at a point r at a time t is a 
linear superposition of strains at points r' at earlier 
instants t'. When spatial dispersion is small one may 
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approximate the right-hand side of (2.1) and write 

crij(r, t) = S dsCijk,(S)ek,(r,  t - -  s) 
0 

oo 
+ 5 ds  d,jk,m(s) Oek,(r, t -- s) /Oxm (2.2) 

0 

where 

and 

COk,(S) = ~ dRCok , (R ,  s) (2.3) 

dok,m(s) = I dR R,,Cuk,(R , s).  (2.4) 

In the equation for acoustic wave propagation what 
enters, however, is the Fourier transform of the stress 
given by (2.2). Taking the relevant transform one gets 

O'ij(q , tO) = Cok l (  tO ) e k l ( q  , t O ) +  iqmdoklm(  tO ) e k l ( q  ' tO). 

(2.5) 

Portigal & Burstein (1968) showed that the tensor d 
describes the acoustical activity of crystals. It has the 
following symmetry properties: 

dijktm = djiklm = do,k,, = -- dk,om. (2.6) 

It was argued (Portigal & Burstein, 1968) that the 
antisymmetry of doktm with respect to the interchange 
of the pair of indices (ij)  with (k l )  follows from 
considerations of causality and invariance of the crys- 
tal Hamiltonian under time reversal. 

Rather than working with a fifth-rank tensor d one 
may work with the fourth-rank pseudotensor G 
defined as (Bhagwat, Wadhawan & Subramanian, 
1986) 

Gqkm n ---- I e~lq dikl m n ( 2 . 7 )  

w h e r e  eil q is the Levi-Civita tensor. A relation inverse 
to (2.7) can be written as 

diklmn = eilq Gqkmn "-I- ekm q Gqiln . (2.8)  

The symmetry properties (2.6) for d imply the follow- 
ing symmetry properties for the pseudotensor G: 

Gqkmn = Gqmkn (2.9) 

3 
Y, Gkkmn = 0, for each m, n = 1, 2, 3. (2.10) 

k=l 

If the direction of propagation of an acoustic wave 
is an acoustic axis which is chosen as the z axis the 
acoustical activity can be shown to be determined by 
the component 63333. The maximum number of 
independent non-vanishing components of G (as well 
as of d) is 45. 

B. The rota t ion-gradient  theory 

Here we describe the elastic deformation of a solid 
in terms of the usual strain tensor e and the rotation 

gradient X, which is a manifestation, in the lowest 
order, of the presence of couple stresses. Up to first 
order in X the energy density W can be written as 

W = ½ e ' C ' e + e ' b : X .  (2.11) 

To first order in the displacement u, its gradient V u 
and its second gradient VVu, e and X are given by 

ei, = ½( c?u,/ axj + auj /  ax, ) (2.12) 

X,j = +½(c~/Ox,)[Ou, , /Ox,-au, /aXm]j#, , , , .  (2.13) 

The wave equation for the displacement u involves 
the symmetric part of the stress % = a W / a e  and the 
non-scalar part of the couple stress P-D = O W / a X  
(Mindlin & Tiersten, 1962). It follows from the study 
of the plane-wave-like solutions of the wave equation 
that the tensor b is responsible for acoustical activity 
in this theory (Bhagwat & Subramanian, 1986). It has 
the following symmetry 

b,jkt = bj~kt , E b,jkk = O, { i, k k, l = 1, 2, 3 }. (2.14) 
k 

Consequently the tensor b has a maximum of 48 
independent non-vanishing components. If the 
acoustic axis is chosen as the z axis, the acoustical 
activity for waves travelling along the acoustic axis 
is governed by the quantity (b1331-Jr-b2332 ). 

Although both the descriptions have their origin in 
the property of elasticity, the tensors G and b have 
different symmetries given by (2.9), (2.10) and (2.14) 
and also different numbers of independent non- 
vanishing components. 

3. Acoustical activity and full-first-gradient theory 

The fundamental equations for an elastic material 
taking into account the full gradient of strain were 
given by Toupin (1962). The term in the energy 
density giving rise to acoustical activity may be 
expressed in the form (Mindlin, 1972) 

W = e o Coktm ektm. (3.1) 

In the above equation eij is the usual strain tensor 
given by (2.12) and 

8ijk = C~2 blk/  OXit~Xj ~- 8ilk. (3.2) 

In view of the symmetry of the strain tensor e 0 and 
of eij k under the interchange of the indices i and j 
the tensor C0k,, possesses the intrinsic symmetry 

Cijklm = Cjiklm = Cijlkm. (3.3)  

Each of {i,j, k, l, m} takes the values 1, 2 and 3. The 
symmetry requirement (3.3) reduces the number of 
independent non-vanishing components of C to 108. 
The component ekl m can be expressed in terms of its 
symmetric part and the antisymmetric part with 
respect to interchange of the last two indices l and 
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m. Thus 

where 

eklm : ek(Im) + ek[lm] (3.4) 

ek(l,,) = ½(ekt,,, + ek~t) = Oel,,,/OXk (3.5) 

is the first gradient of strain and 

ek[ tm]=l[eklm--ekml]=:i :O/OXk(V XU)i#l,,~ (3.6) 

is the rotation gradient. The tensor ekl m which is 
symmetric in the first two indices has 18 independent 
components. The strain-gradient tensor ek(lm), sym- 
metric in the last two indices, also has 18 independent 
components. Furthermore, the rotation-gradient 
tensor Ek[im ] can be expressed in terms of the first- 
strain-gradient tensor Ek(im), since 

F.k[Im]=l[eklm--Ekmt] = El(kra)--Em(kl ). (3.7) 

Thus (3.4) and (3.7) together express ektm in terms of 
the first gradient of strain, while (3.5) provides the 
inverse relation. The energy density W of (3.1) can 
therefore be expressed in terms of the strain e 0 and 
its first gradient ek(lm): 

W = eijCut,,,kek(tr,, ). (3.8) 

From (3.1), (3.4), (3.7) and (3.8) we have 

(-'ijl,,,k = Cukl,,, + C u k , , I -  Cq,,ak. (3.9) 

A relation inverse to (3.9) can easily be obtained. We 
find 

C,jk,~ = ½[ Co,,,,k + CU,,,k,]. (3.10) 

It follows from (3.9) that the symmetry with respect 
to the interchange of i and j  of Cukt~ implies the same 
symmetry for CUt~k. Further, since CUt,,,k is symmetric 
with respect to the interchange of l and m, Cut,,,k 
must also be symmetric under the same interchange. 
If we compare the tensor C with d of Portigal & 
Burstein (1968), the above symmetry of Cutr,,k with 
respect to the indices i, j and l, m is the same as that 
of d implied by the first two equations of (2.6). The 
additional symmetry (or rather the antisymmetry) of 
d as given by the last equation in (2.6) was argued 
by Portigal & Burstein (1968) on considerations of 
causality and time-reversal symmetry as applied to 
the total Hamiltonian of the crystal. The total energy 
can be obtained by integrating the energy density 
(3.8) over the volume of the crystal. If the crystal 
surfaces are strain free, it can be shown by carrying 
out integration by parts that the part of ~ijlmk 
symmetric with respect to the simultaneous inter- 
change of ( i j )  with ( k l )  does not contribute to the 
total energy. Hence we can set the symmetric part 
equal to zero and demand that 

Cijlmk = --CImijk" (3.11) 

In addition (~ also has the symmetry pointed out 

earlier, viz  

Cij,,,,k = Cji,,,,k = C~m,k. (3 .12)  

With properties (3.11) and (3.12) of C and those of 
d contained in (2.6) we can identify the tensor (~ with 
d. This identification limits the maximum number of 
independent components of C [and in view of (3.9) 
and (3.10) also of C] to 45. The above considerations 
show that the results based on the phenomenological 
theory of acoustical activity would be identical to 
those emerging from a theory invoking the funda- 
mental equations of elasticity given by Toupin (1962). 

To see the emergence of the rotation-gradient 
theory one must use the variables e{klm } defined as 
(Mindlin, 1972) 

e~kl ,~=½(ekt ,~+el , , ,k+emkl)  (3.13) 

and the rotation gradient ek[Im] in place of ekl m in 
(3.1). It is easy to see that 

eklm=e(klm}+2(el[km]+ek[tm]).  (3.14) 

The use of the above equation in (3.1) for W gives 
4 

W = eijCijklmE{klm}'+~eijCijklmEk[im]. (3.15) 
s In the first term involving e~kj,,,~ only that part Cokt,,, 

of Coke,,, which is totally symmetric in the indices k, 
! and m will contribute. Thus, 

s 
C i j k l m = i (  Cijklm-~ Cijlmk'+ Cijmkl), ( 3 . 1 6 )  

and in the second term the part a Cijkt,,, which is anti- 
symmetric with respect to the interchange of l with 
m will contribute 

A 1 
C uktm = ~( Ciikl,,, -- Cok~t). (3.17) 

In the general case, therefore, W can be expressed 
a s  

W s 4 A = eijCijklme{klmj+~eijCijklmek[im ]. (3.18) 
It is clear that the rotation-gradient description would 
result from (3.18) only if the first term on the right- 
hand side of it is zero, i.e. C s ~jkt,, ---- 0. In terms of the 
components of C this condition reads 

Cukl,,, + Cijl,,,k + Cu,,,kl = O. (3 .19)  

The second term on the right-hand side of (3.18) can 
be transformed into its familiar form, viz  the second 
term on the right-hand side of (2.11), by noting that 
ektlm ] can be expressed in terms of a second-rank 
tensor Xkp by the relation 

ektl,,,l = el,,,pXkp (3.20) 

and the identification 
4 A 

bijkp : ~et,,,p C (iktm. (3.21 ) 

The relation (3.19) imposes 60 constraints on the 
components of C. If one disregards the constraints 
imposed on C by the relations (3.11) and (3.10), the 
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independent components of C reduce from 108 to 48, 
which was the number obtained for the tensor b in 
the rotation-gradient theory. However, if we were to 
take into account the further restrictions implied by 
the relation (3.11) the number of independent 
components of C (or C) will be further reduced. A 
detailed analysis of all the constraints on C shows 
that only the six components C~223, CI1332, C!1132, 
C22331, C22231 and C33231 are independent. The other 
non-vanishing components are 

C11232 : _ C22131 = _2C13122 __. 2C23121 = _~CII 1223 

1 
C11233 = 2C23131 = - C33121 = -2C13123 --= -~C11332 

C11123 = - 2  C13121 = - Cl1132 

C22133 - - C33122 = - 2  C 2 3 , 3 2 -  = 2(?23123 = -~ C223311 

C22123 = - 2  C23122 = - C22231 

C33132 = - 2  C23133 = - C33231 

and those related to the above by the intrinsic sym- 
metry relation (3.3). It follows from the relations 
(3.21), (3.17), (3.10) and (2.8) (with the identification 
d = C )  that the activity tensor b of the rotation- 
gradient theory which conforms to the restrictions 
from considerations of the total energy has only six 
non-vanishing independent components [as against 
48 reported earlier (Bhagwat & Subramanian, 1986)] 
for the triclinic system and is related to the tensor G 
by the equation 

bijkp = 2[ Gpikj -- t~pj Gqikq q- elmpeikq Gqjml]. 

The quantities [b1331 4-b2332] and G3333 which govern 
the angle of rotation of a plane-polarized acoustic 

wave in the two descriptions respectively turn out to 
be proportional to the component C33231. This shows 
that even this restricted tensor b will lead to acoustical 
activity in all those crystal classes which were found 
acoustically active in either of the two earlier descrip- 
tions. In other words, the restricted theory still retains 
the essential ingredients of the general theory as far 
as the explanation of acoustical activity is concerned. 
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Abstract 

The temperature factors of Cd and Zn for h00 
reflexions calculated by numerical Fourier transfor- 
mation are compared with the temperature factors 
determined with the help of series expansion of the 
anharmonic term of the probability density function 
(p.d.f.). The anharmonic parameters used have been 
derived by least-squares fit of measured Bragg 

intensities in the framework of the anharmonic one- 
particle potential (OPP) model. For Cd a deviation 
of up to 7% is found for the results obtained for the 
symmetric part and up to 50% for the antisymmetric 
part of the temperature factor. It is shown that 
numerical Fourier transformation of the p.d.f., using 
the anharmonic parameters given in the literature for 
Zn, is not always possible, because the p.d.f, is diver- 
gent for some of these parameters. 
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